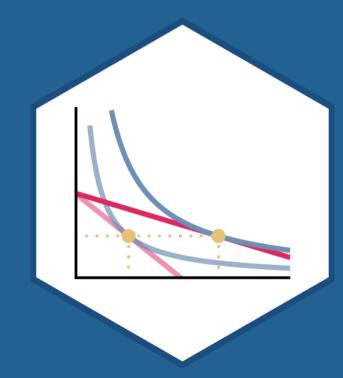
# 2.2 — Production Technology ECON 306 • Microeconomic Analysis • Fall 2022 Ryan Safner Associate Professor of Economics ✓ safner@hood.edu ○ ryansafner/microF22 ⓒ microF22.classes.ryansafner.com



# Outline

#### Production in the Short Run

The Firm's Problem: Long Run

**Isoquants and MRTS** 

**Isocost Lines** 

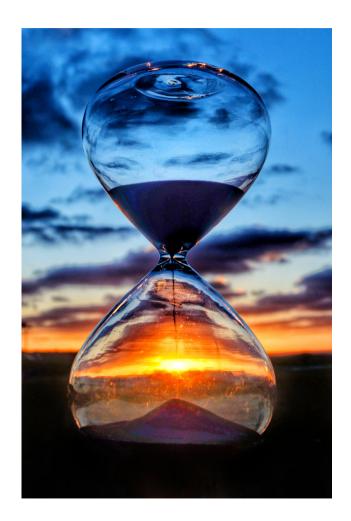


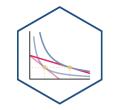
# The "Runs" of Production

- "Time"-frame usefully divided between short vs. long run analysis
- **Short run**: at least one factor of production is **fixed** (too costly to change)

 $q=f(ar{k},l)$ 

- Assume capital is fixed (i.e. number of factories, storefronts, etc)
- Short-run decisions only about using labor

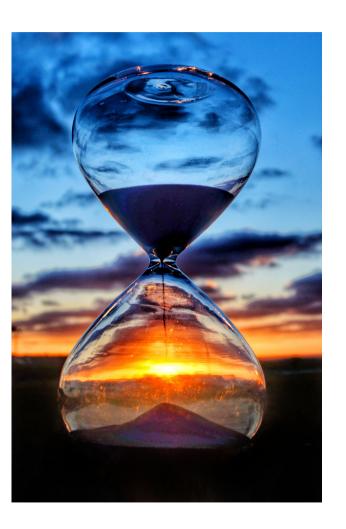


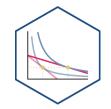


# The "Runs" of Production

- "Time"-frame usefully divided between short vs. long run analysis
- Long run: all factors of production are variable (can be changed)

$$q=f(k,l)$$







# **Production in the Short Run**

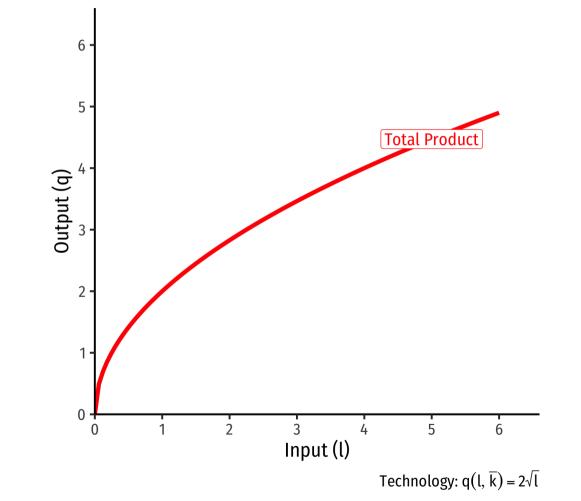
#### **Production in the Short Run: Example**

**Example**: Consider a firm with the production function

 $q = k^{0.5} l^{0.5}$ 

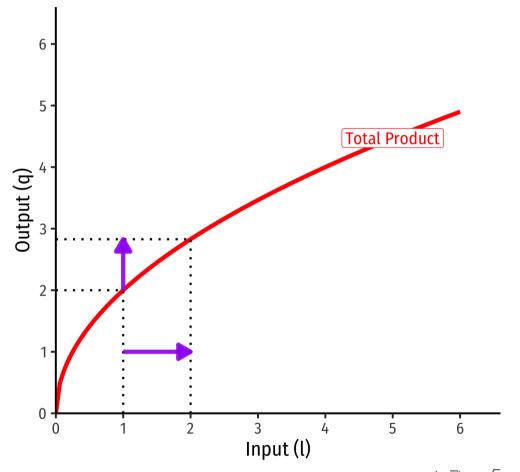
• Suppose in the short run, the firm has 4 units of capital.

 Derive the short run production function.
 What is the total product (output) that can be made with 4 workers?

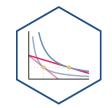


# **Marginal Products**

- The marginal product of an input is the *additional* output produced by *one more unit* of that input (*holding all other inputs constant*)
- Like marginal utility
- Similar to marginal utilities, I will give you the marginal product equations



Technology:  $q(l, \overline{k}) = 2\sqrt{l}$ 



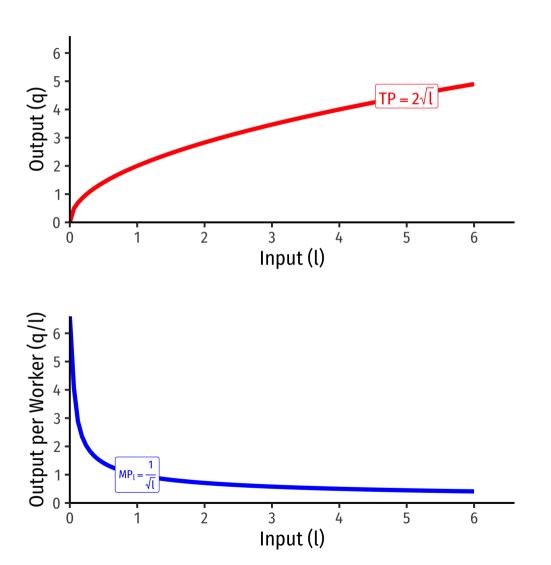
# **Marginal Product of Labor**

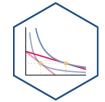
 Marginal product of labor (MP<sub>l</sub>): additional output produced by adding one more unit of labor (holding k constant)

$$MP_l = rac{\Delta q}{\Delta l}$$

•  $MP_l$  is slope of TP at each value of l!

• Note: via calculus:  $\frac{\partial q}{\partial l}$ 





# **Marginal Product of Capital**

• Marginal product of capital  $(MP_k)$ :

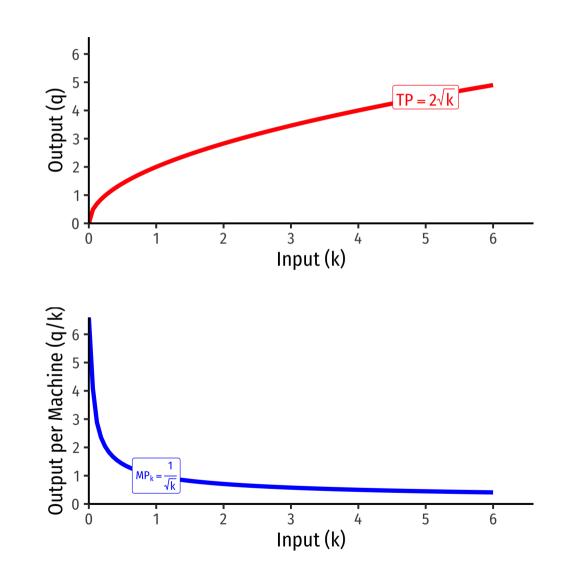
additional output produced by adding one more unit of capital (holding l constant)

$$MP_k = rac{\Delta q}{\Delta k}$$

•  $MP_k$  is slope of TP at each value of k!

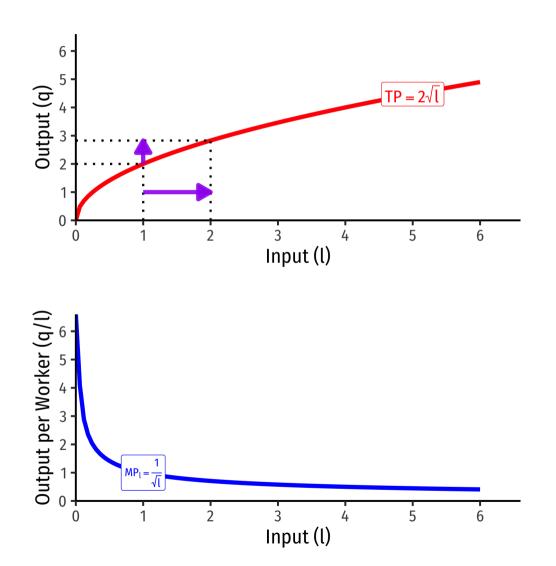
• Note: via calculus:  $\frac{\partial q}{\partial k}$ 

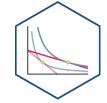
• Note we don't consider capital in the short run!



# **Diminishing Returns**

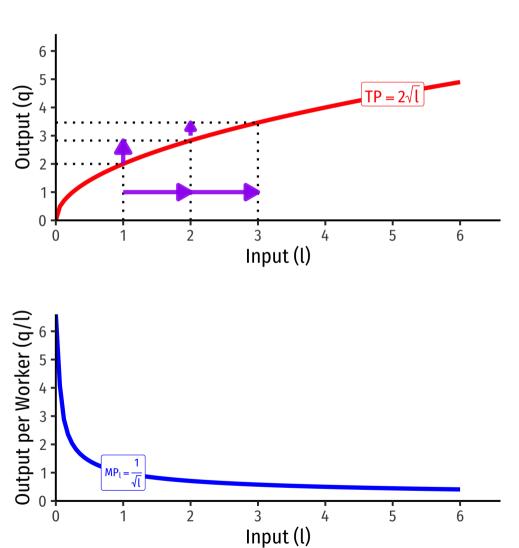
- Law of Diminishing Returns: adding more of one factor of production holding all others constant will result in successively lower increases in output
- In order to increase output, firm will need to increase *all* factors!

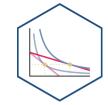




# **Diminishing Returns**

- Law of Diminishing Returns: adding more of one factor of production holding all others constant will result in successively lower increases in output
- In order to increase output, firm will need to increase *all* factors!





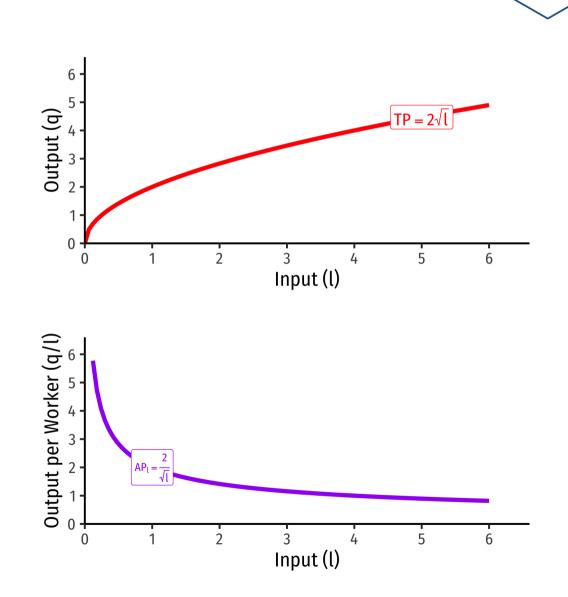
# **Average Product of Labor (and Capital)**

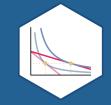
• Average product of labor  $(AP_l)$ : total output per worker

$$AP_l = rac{q}{l}$$

- A measure of *labor productivity*
- Average product of capital  $(AP_k)$ : total output per unit of capital

$$AP_k = rac{q}{k}$$





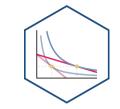
# The Firm's Problem: Long Run

# The Long Run

• In the long run, *all* factors of production are variable

q=f(k,l)

- Can build more factories, open more storefronts, rent more space, invest in machines, etc.
- So the firm can choose both  $l \ \textit{and} \ k$





# **The Firm's Problem**

- Based on what we've discussed, we can fill in a constrained optimization model for the firm
  - But don't write this one down just yet!
- The firm's problem is:
- 1. Choose: < inputs and output >
- 2. In order to maximize: < profits >
- 3. Subject to: < technology >
- It's actually much easier to break this into 2
   stages. See today's <u>class notes</u> page for an example using only one stage.

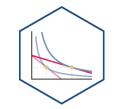


# The Firm's Two Problems

1<sup>st</sup> Stage: firm's profit maximization problem:

1. Choose: < output >

- 2. In order to maximize: < profits >
- We'll cover this later...first we'll explore:





# The Firm's Two Problems

1<sup>st</sup> Stage: firm's profit maximization problem:

1. Choose: < output >

- 2. In order to maximize: < profits >
- We'll cover this later...first we'll explore:

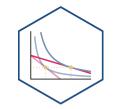
2<sup>nd</sup> Stage: firm's cost minimization problem:

1. Choose: < inputs >

2. In order to *minimize*: < cost >

- 3. Subject to: < producing the optimal output >
- Minimizing costs  $\iff$  maximizing profits





#### **Long Run Production**



Example: 
$$q=\sqrt{lk}$$

|          |   | Capital, k |      |      |      |      |      |
|----------|---|------------|------|------|------|------|------|
|          |   | 0          | 1    | 2    | 3    | 4    | 5    |
| Labor, l | 0 | 0.00       | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|          | 1 | 0.00       | 1.00 | 1.41 | 1.73 | 2.00 | 2.24 |
|          | 2 | 0.00       | 1.41 | 2.00 | 2.45 | 2.83 | 3.16 |
|          | 3 | 0.00       | 1.73 | 2.45 | 3.00 | 3.16 | 3.46 |
|          | 4 | 0.00       | 2.00 | 2.83 | 3.46 | 4.00 | 4.47 |
|          | 5 | 0.00       | 2.24 | 3.16 | 3.87 | 4.47 | 5.00 |

- Many input-combinations yield the same output!
- So how does the firm choose the *optimal* combination?

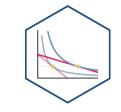
# **Mapping Input-Combination Choices Graphically**

8

6

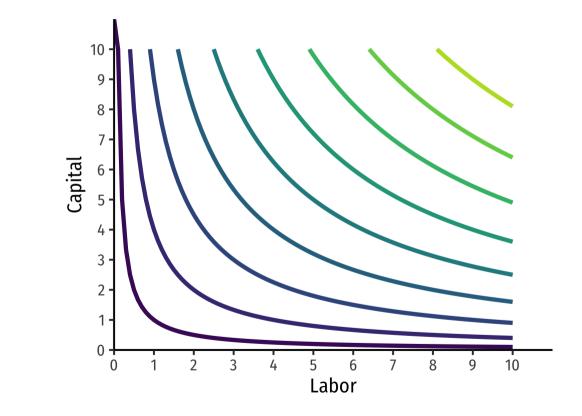
•4

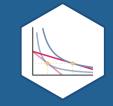
2



3-D Production Function

2-D Isoquant Contours





# **Isoquants and MRTS**

#### **Isoquant Curves**

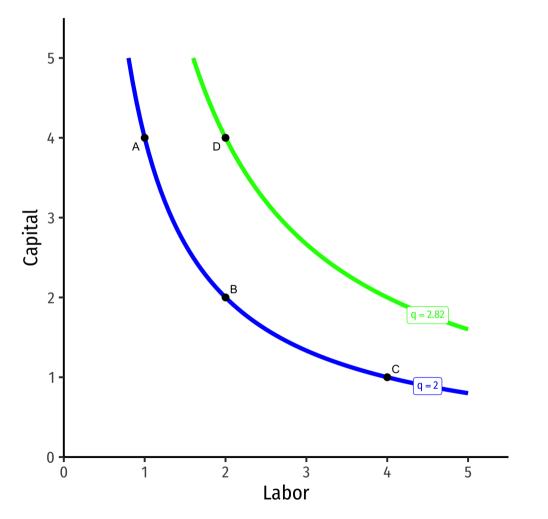
• We can draw an **isoquant** indicating all combinations of l and k that yield the same q

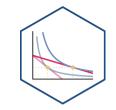


#### **Isoquant Curves**

- We can draw an **isoquant** indicating all combinations of *l* and *k* that yield the same *q*
- Combinations *above* curve yield more output; on a higher curve

$$\circ \ D > A = B = C$$





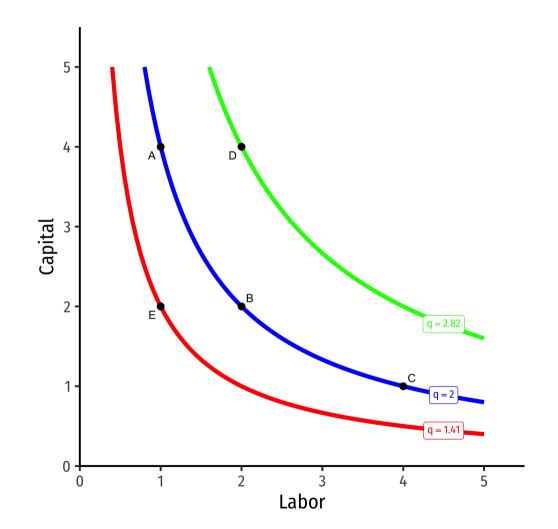
#### **Isoquant Curves**

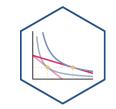
- We can draw an **isoquant** indicating all combinations of *l* and *k* that yield the same *q*
- Combinations *above* curve yield more output; on a higher curve

 $\circ \ D > A = B = C$ 

 Combinations *below* the curve yield less output; on a lower curve

$$\circ \ E < A = B = C$$





# Marginal Rate of *Technical* Substitution I

• If your firm uses fewer workers, how much more capital would it need to produce the same amount?

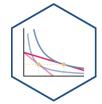


# Marginal Rate of *Technical* Substitution I

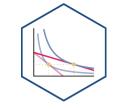
- If your firm uses fewer workers, how much more capital would it need to produce the same amount?
- Marginal Rate of Technical Substitution (MRTS): rate at which firm trades off one input for another to *yield same output*
- Firm's **relative value** of using *l* in production based on its tech:

"We could give up (MRTS) units of k to use 1 more unit of l to produce the same output."





# Marginal Rate of *Technical* Substitution II



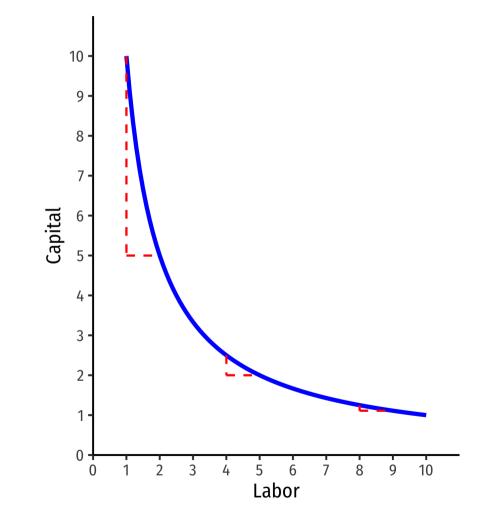


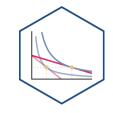
# Marginal Rate of *Technical* Substitution II

• MRTS is the slope of the isoquant

$$MRTS_{l,k} = -rac{\Delta k}{\Delta l} = rac{rise}{run}$$

- Amount of k given up for 1 more l
- Note: slope (MRTS) changes along the curve!
- Law of diminishing returns!



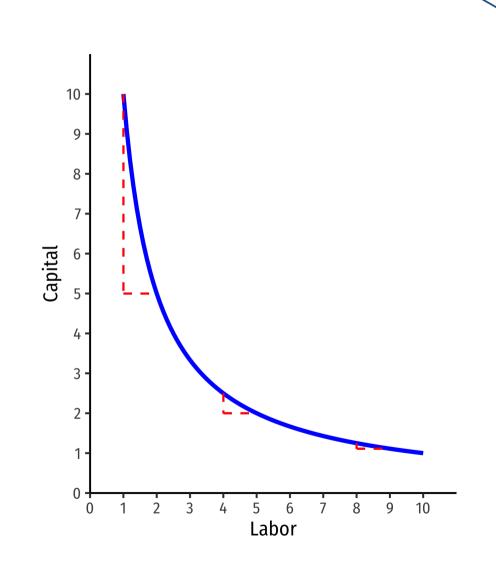


#### **MRTS and Marginal Products**

• Relationship between MP and MRTS:

$$rac{\Delta k}{\Delta l} = -rac{MP_l}{MP_k}$$

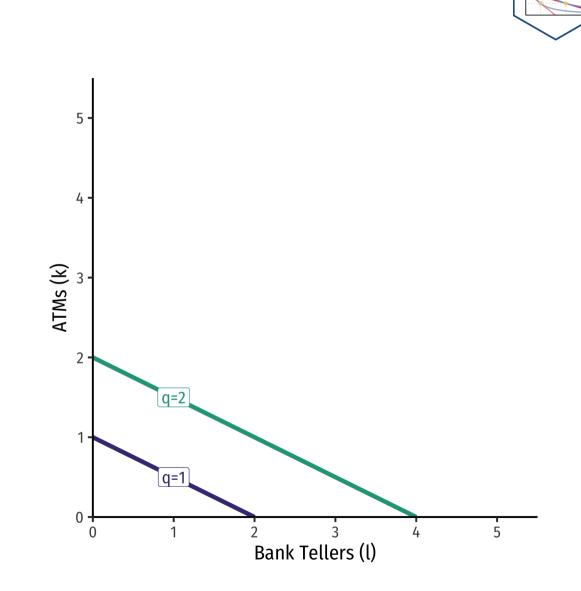
- See proof in <u>today's class notes</u>
- Sound familiar? 🧐



# **Special Case I: Perfect Substitutes**

**Example**: Consider Bank Tellers (l) and ATMs (k)

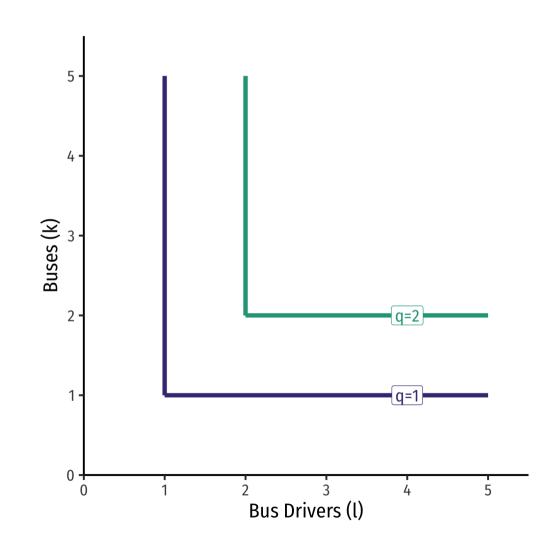
- Suppose 1 ATM can do the work of 2 bank tellers
- Perfect substitutes: inputs that can be substituted at same fixed rate and yield same output
- $MRTS_{l,k} = -0.5$  (a constant!)

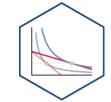


# **Special Case II: Perfect Complements**

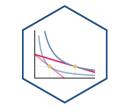
**Example**: Consider buses (k) and bus drivers (l)

- Must combine together in fixed proportions (1:1)
- Perfect complements: inputs must be used together in same fixed proportion to produce output
- $MRTS_{l,k}$ :?





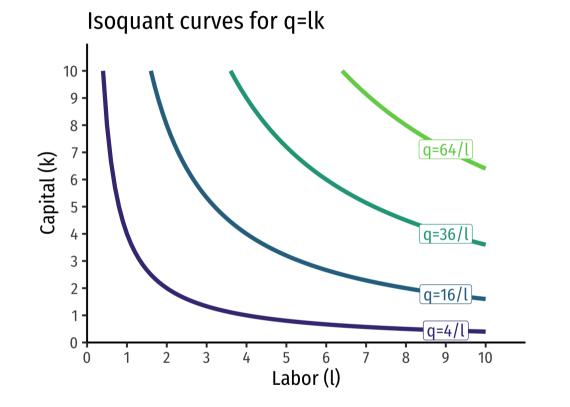
#### **Common Case: Cobb-Douglas Production Functions**



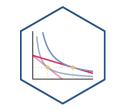
• Again: very common functional form in economics is **Cobb-Douglas** 

$$q = A \, k^a l^b$$

- Where a,b>0
  - $\circ~$  often a+b=1
- ullet A is total factor productivity



#### **Practice**



**Example**: Suppose a firm has the following production function:

$$q = 2lk$$

Where its marginal products are:

 $MP_l = 2k \ MP_k = 2l$ 

1. Put l on the horizontal axis and k on the vertical axis. Write an equation for  $MRTS_{l,k}$ .

2. Would input combinations of (1,4) and (2,2) be on the same isoquant?

3. Sketch a graph of the isoquant from part 2.

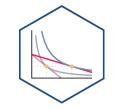


# **Isocost Lines**

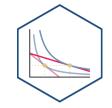
# **Isocost Lines**

- If your firm can choose among *many* input combinations to produce *q*, which combinations are optimal?
- Those combination that are **cheapest**
- Denote prices of each input as:
  - $\circ \hspace{0.1 cm} w$ : price of labor (wage)
  - *r*: price of capital
- Let C be total cost of using inputs (l, k) at market prices (w, r) to produce q units of output:

$$C(w,r,q)=wl+rk$$







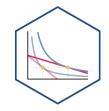
wl + rk = C

$$wl + rk = C$$

• Solve for k to graph

$$k = rac{C}{r} - rac{w}{r}l$$

Capital



Labor

$$wl + rk = C$$

• Solve for k to graph

$$k = rac{C}{r} - rac{w}{r}l$$

- Vertical-intercept:  $\frac{C}{r}$  Horizontal-intercept:  $\frac{C}{w}$

C/r Capital 0 -C/w 0 Labor

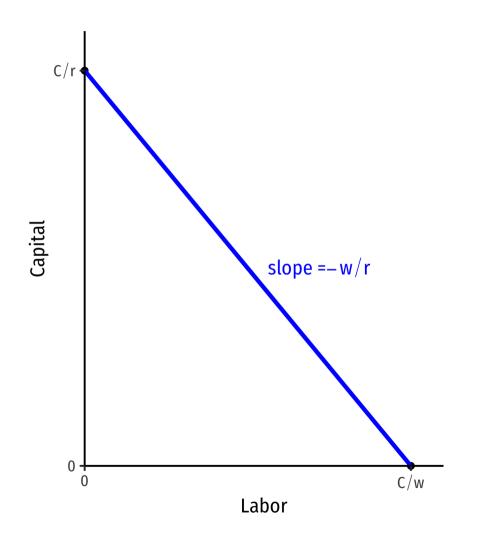
$$wl + rk = C$$

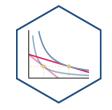
• Solve for k to graph

$$k = \frac{C}{r} - \frac{w}{r}l$$

- Vertical-intercept:  $\frac{C}{r}$  Horizontal-intercept:  $\frac{C}{w}$

• slope: 
$$-\frac{w}{r}$$





#### The Isocost Line: Example

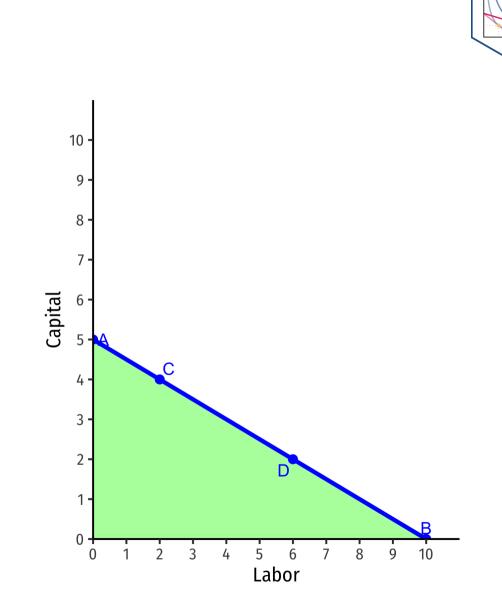
**Example**: Suppose your firm has a purchasing budget of \$50. Market wages are 5/worker-hour and the mark rental rate of capital is 10/machine-hour. Let l be on the horizontal axis and k be on the vertical axis.

1. Write an equation for the isocost line (in graphable form).

2. Graph the isocost line.

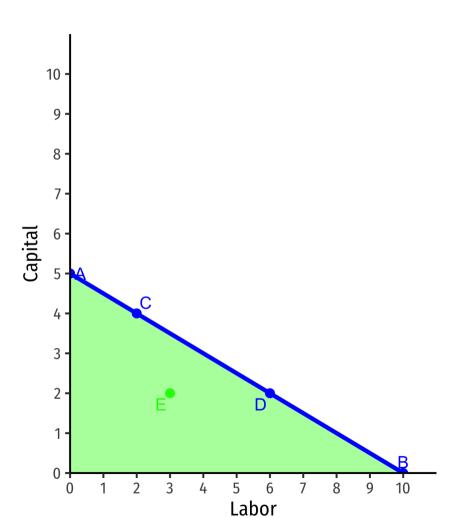
## **Interpreting the Isocost Line**

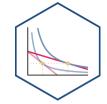
- Points on the line are same total cost
  - $\circ$  A: (0l) + 10(5k) = 50
  - $\circ$  B: (10l) + 10(0k) = 50
  - $\circ$  C: (2l) + 10(4k) = 50
  - $\circ~$  D: \$5(6l) + \$10(2k) = \$50



# **Interpreting the Isocost Line**

- Points on the line are same total cost
- Points beneath the line are cheaper (but may produce less)
  - $\circ$  E: (3l) + (2k) = 35

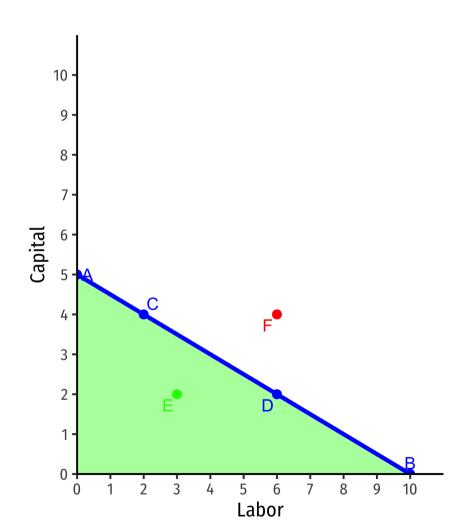


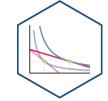


# **Interpreting the Isocost Line**

- Points on the line are same total cost
- Points beneath the line are cheaper (but may produce less)
  - $\circ$  E: (3l) + 10(2k) = 35
- Points above the line are more expensive (and may produce more)

$$\circ$$
 F:  $(6l) + 10(4k) = 70$ 

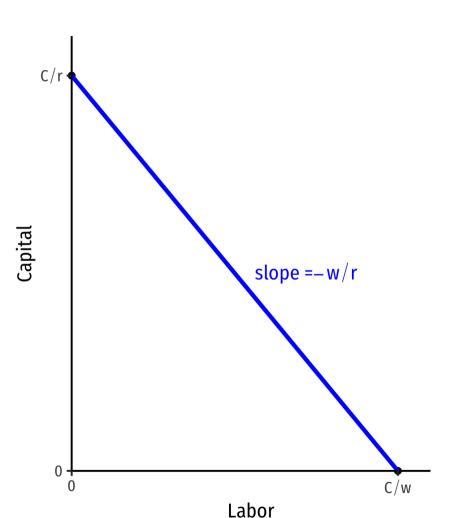


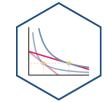


# **Interpretting the Slope**

- **Slope**: tradeoff between *l* and *k* at market prices
  - $\circ$  Market "exchange rate" between l and k
- *Relative* price of *l* or the opportunity cost of *l*:

Hiring 1 more unit of l requires giving up  $\left(\frac{w}{r}\right)$  units of k





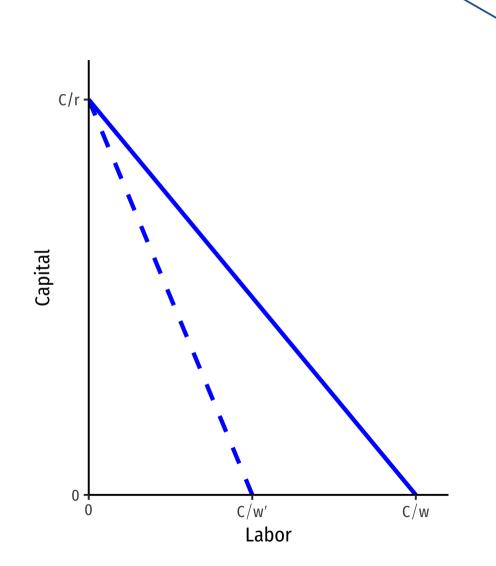
# **Changes in Relative Factor Prices I**

• Changes in relative factor prices: rotate the line

**Example**: An increase in the price of l

• Slope changes:  $-\frac{w'}{r}$ 





# **Changes in Relative Factor Prices II**

• Changes in relative factor prices: rotate the line

**Example**: An increase in the price of k

• Slope changes:  $-\frac{w}{r'}$ 



