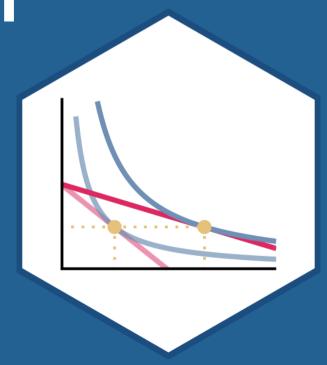
2.5 — Short Run Profit Maximization

ECON 306 • Microeconomic Analysis • Fall 2022 Ryan Safner

Associate Professor of Economics

- safner@hood.edu
- ryansafner/microF22
- microF22.classes.ryansafner.com



Outline

Revenues

Profits

Comparative Statics

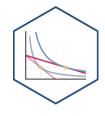
Calculating Profit

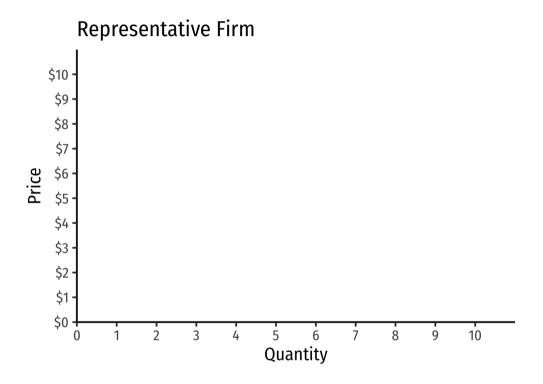
Short-Run Shut-Down Decisions

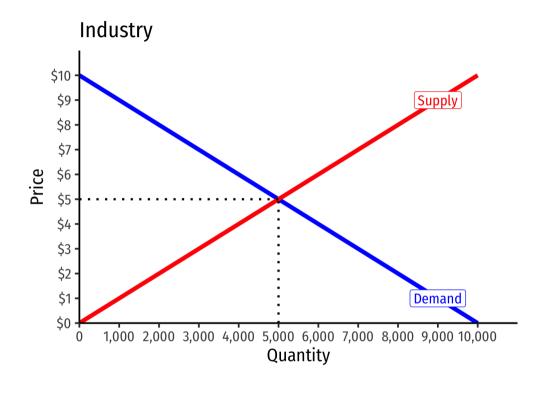
The Firm's Short-Run Supply Decision

Revenues

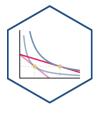
Revenues for Firms in *Competitive* Industries I

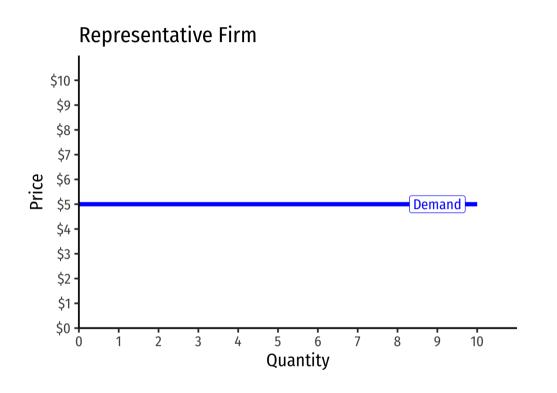


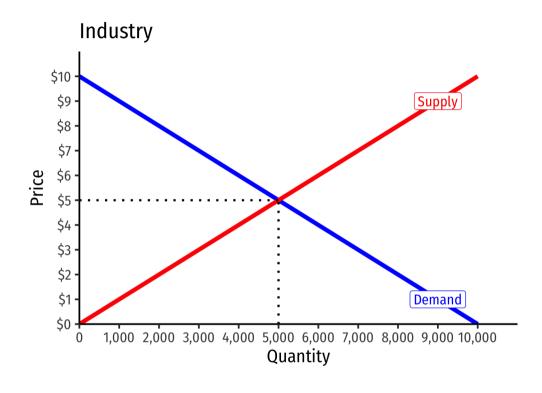




Revenues for Firms in *Competitive* Industries I

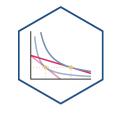


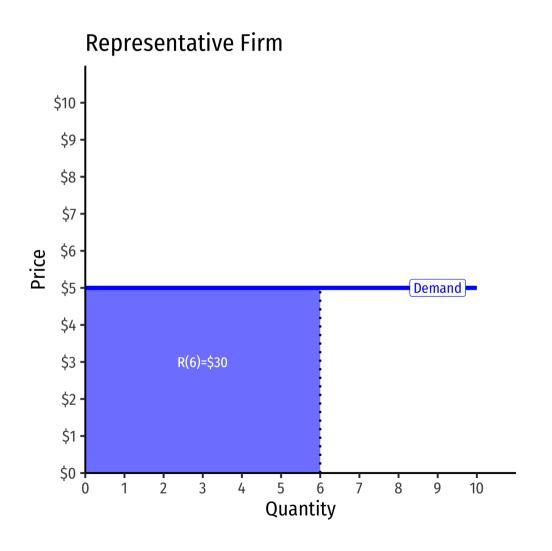




- Demand for a firm's product is **perfectly elastic** at the market price
- Where did the supply curve come from? You'll know today

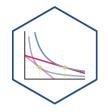
Revenues for Firms in *Competitive* Industries II





• Total Revenue R(q)=pq

Average and Marginal Revenues



• Average Revenue: revenue per unit of output

$$AR(q) = rac{R}{q}$$

- $\circ \ AR(q)$ is **by definition** equal to the price! (Why?)
- Marginal Revenue: change in revenues for each additional unit of output sold:

$$MR(q) = rac{\Delta R(q)}{\Delta q} pprox rac{R_2 - R_1}{q_2 - q_1}$$

- Calculus: first derivative of the revenues function
- For a *competitive* firm (only), MR(q) = p, i.e. the price!

Average and Marginal Revenues: Example

Example: A firm sells bushels of wheat in a very competitive market. The current market price is \$10/bushel.

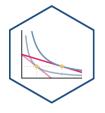
For the 1st bushel sold:

- What is the total revenue?
- What is the average revenue?

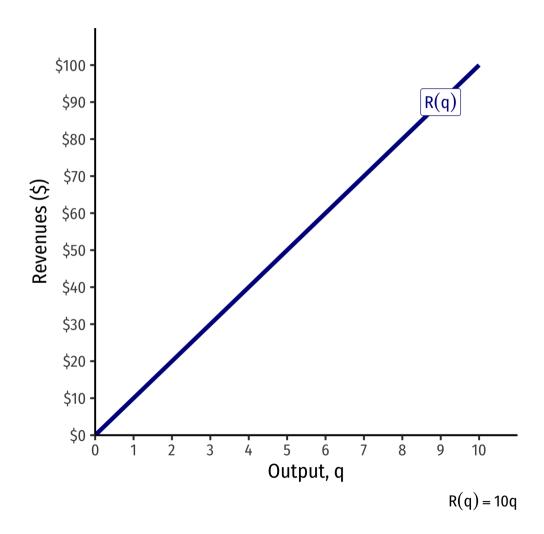
For the 2nd bushel sold:

- What is the total revenue?
- What is the average revenue?
- What is the marginal revenue?

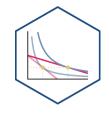
Total Revenue, Example: Visualized



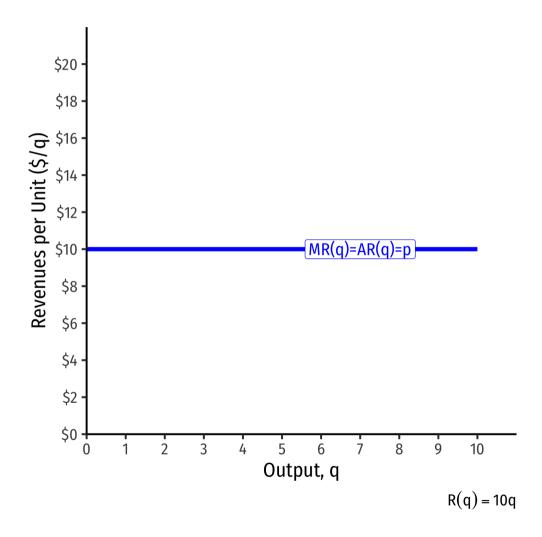
q	R(q)	
0	0	
1	10	
2	20	
3	30	
4	40	
5	50	
6	60	
7	70	
8	80	
9	90	
10	100	



Average and Marginal Revenue, Example: Visualized

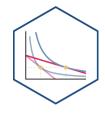


$oldsymbol{q}$	R(q)	AR(q)	MR(q)
0	0	_	_
1	10	10	10
2	20	10	10
3	30	10	10
4	40	10	10
5	50	10	10
6	60	10	10
7	70	10	10
8	80	10	10
9	90	10	10
10	100	10	10



Profits

Recall: The Firm's Two Problems

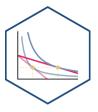


1st Stage: firm's profit maximization problem:

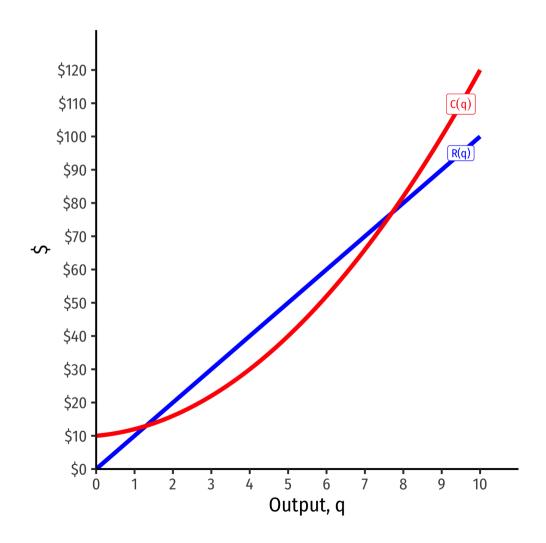
- 1. Choose: < output >
- 2. In order to maximize: < profits >

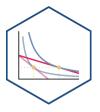
2nd Stage: firm's cost minimization problem:

- 1. Choose: < inputs >
- 2. In order to *minimize*: < cost >
- 3. Subject to: < producing the optimal output >
- Minimizing costs \iff maximizing profits

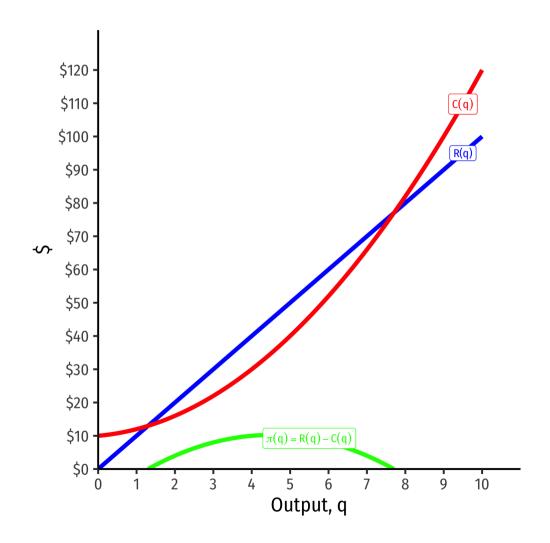


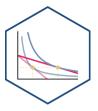
•
$$\pi(q) = R(q) - C(q)$$





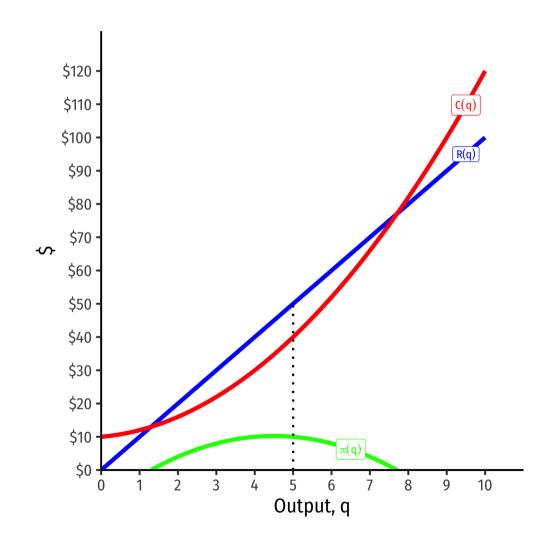
•
$$\pi(q) = R(q) - C(q)$$

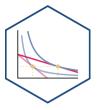




•
$$\pi(q) = R(q) - C(q)$$

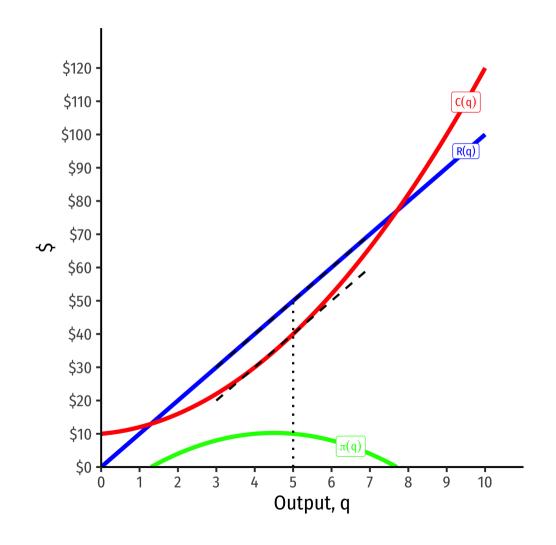
ullet Graph: find q^* to max $\pi \Longrightarrow q^*$ where max distance between R(q) and C(q)

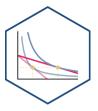




- $\pi(q) = R(q) C(q)$
- ullet Graph: find q^* to max $\pi \Longrightarrow q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

$$MR(q) = MC(q)$$





- $\pi(q) = R(q) C(q)$
- ullet Graph: find q^* to max $\pi \Longrightarrow q^*$ where max distance between R(q) and C(q)
- Slopes must be equal:

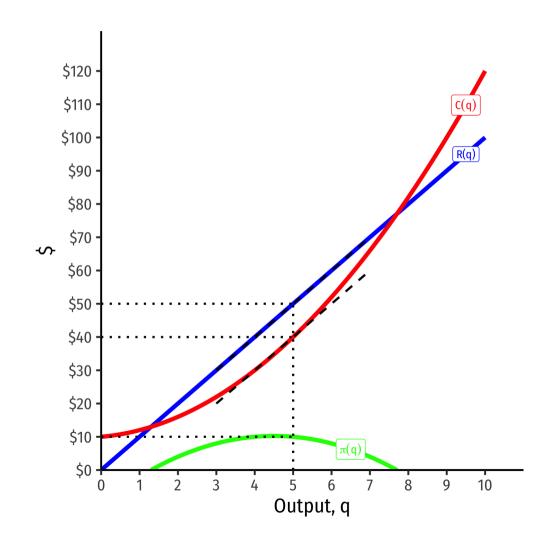
$$MR(q) = MC(q)$$

• At $q^st=5$:

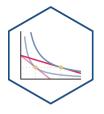
$$\circ R(q) = 50$$

$$\circ \ C(q) = 40$$

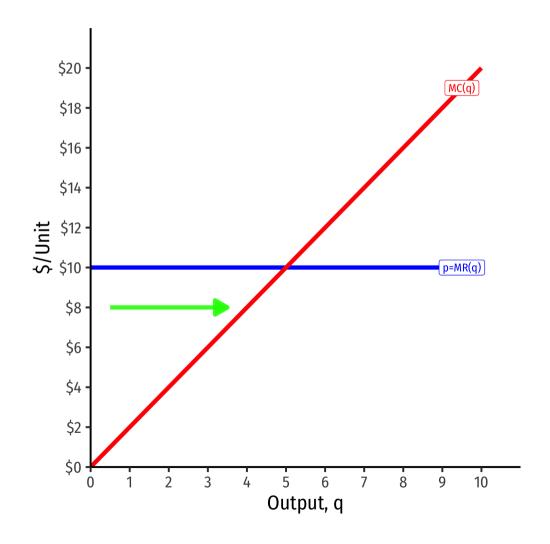
$$\circ \ \pi(q) = 10$$



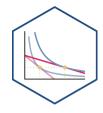
Visualizing Profit Per Unit As MR(q) and MC(q)



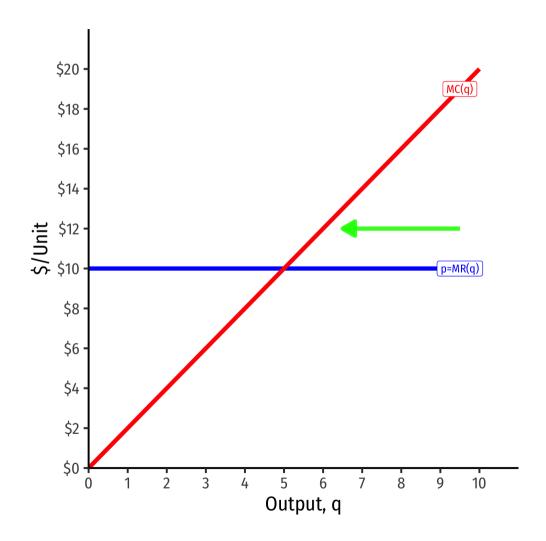
• At low output $q < q^*$, can increase π by producing *more*: MR(q) > MC(q)



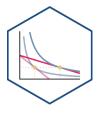
Visualizing Profit Per Unit As MR(q) and MC(q)



ullet At high output $q>q^*$, can increase π by producing *less*: MR(q) < MC(q)

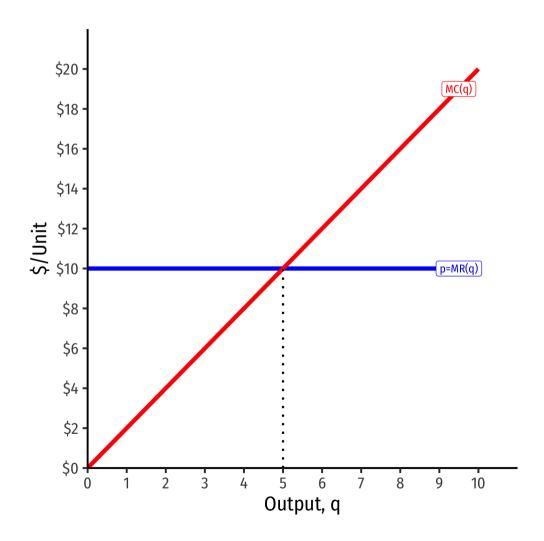


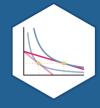
Visualizing Profit Per Unit As MR(q) and MC(q)



• π is *maximized* where

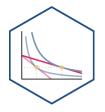
$$MR(q) = MC(q)$$



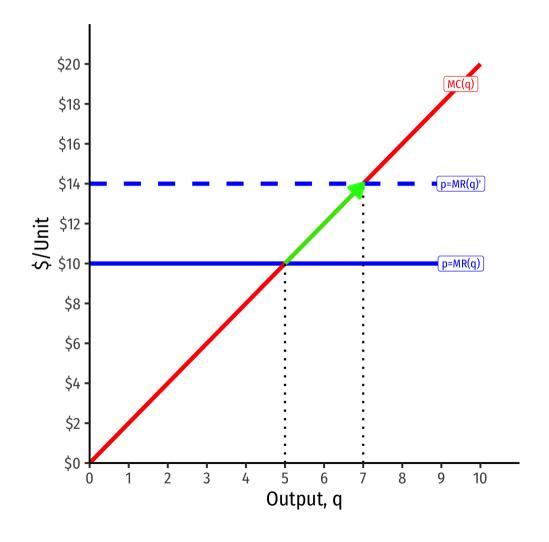


Comparative Statics

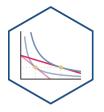
If Market Price Changes I



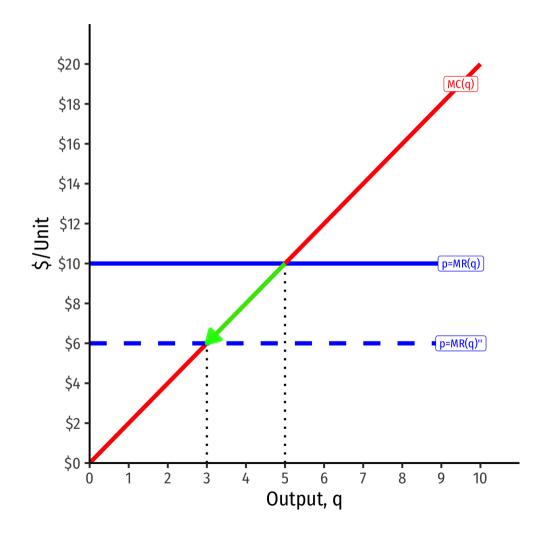
- Suppose the market price **increases**
- Firm (always setting MR=MC) will respond by producing more



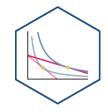
If Market Price Changes II



- Suppose the market price **decreases**
- Firm (always setting MR=MC) will respond by producing less



The Firm's Supply Curve

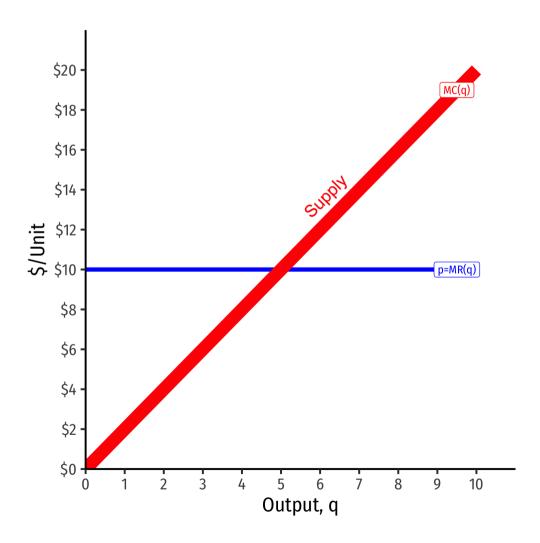


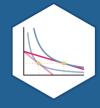
• The firm's marginal cost curve is its supply curve[‡]

$$p = MC(q)$$

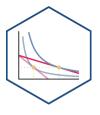
- How it will supply the optimal amount of output in response to the market price
- Firm always sets its price equal to its marginal cost

^{*} Mostly...there is an important **exception** we will see shortly!



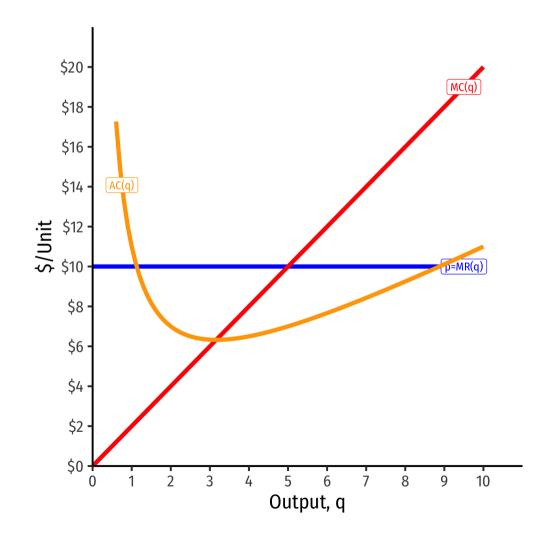


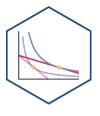
Calculating Profit



• Profit is

$$\pi(q) = R(q) - C(q)$$





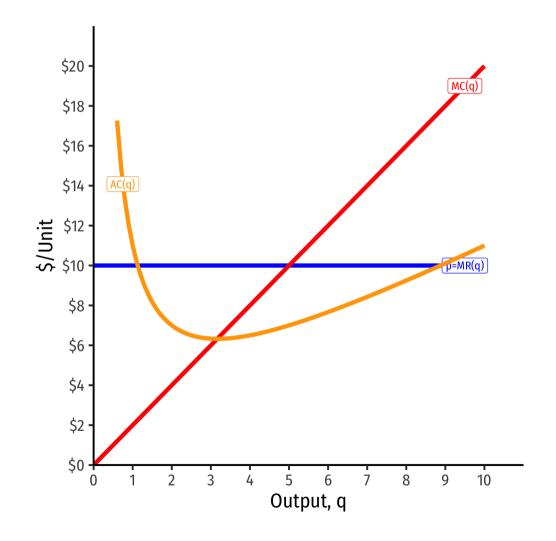
• Profit is

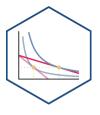
$$\pi(q) = R(q) - C(q)$$

Profit per unit can be calculated as:

$$rac{\pi(q)}{q} = AR(q) - AC(q)$$

$$= p - AC(q)$$





• Profit is

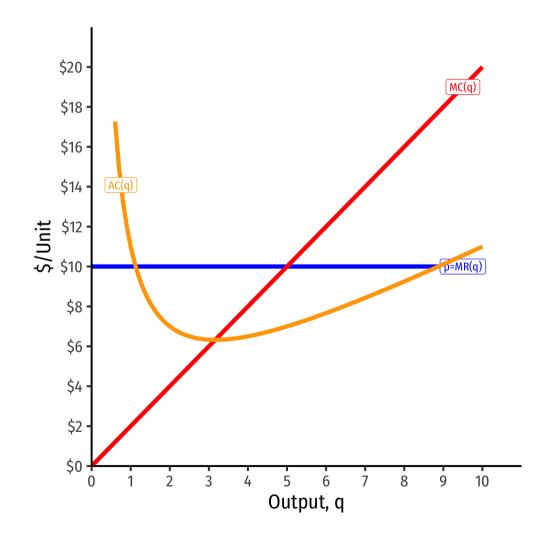
$$\pi(q) = R(q) - C(q)$$

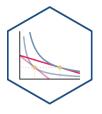
Profit per unit can be calculated as:

$$rac{\pi(q)}{q} = AR(q) - AC(q)$$
 $= p - AC(q)$

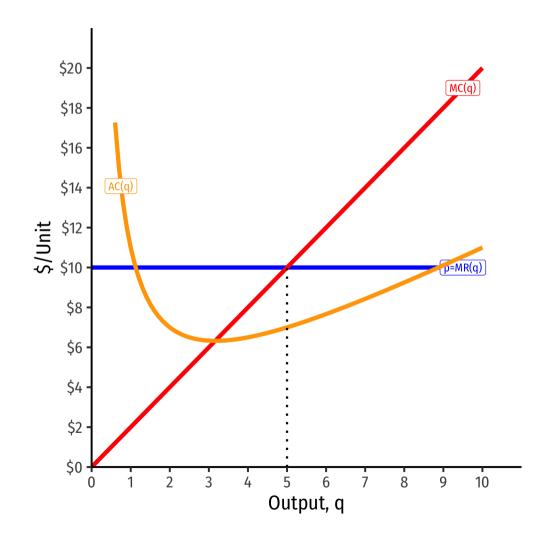
Multiply by q to get total profit:

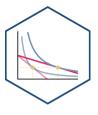
$$\pi(q) = q \left[p - AC(q) \right]$$



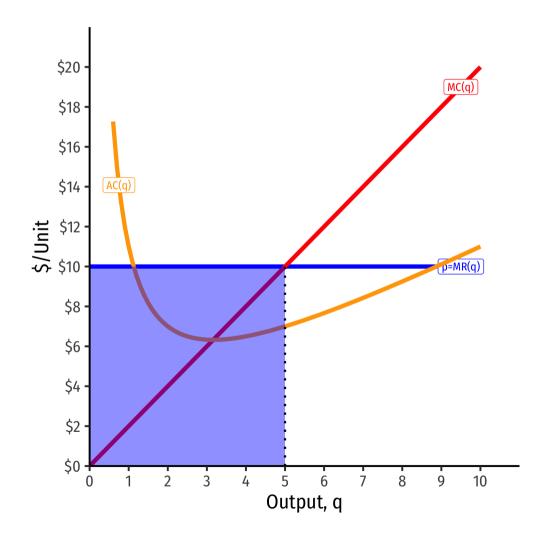


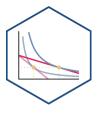
- At market price of p* = \$10
- At q* = 5 (per unit):
- At q* = 5 (totals):



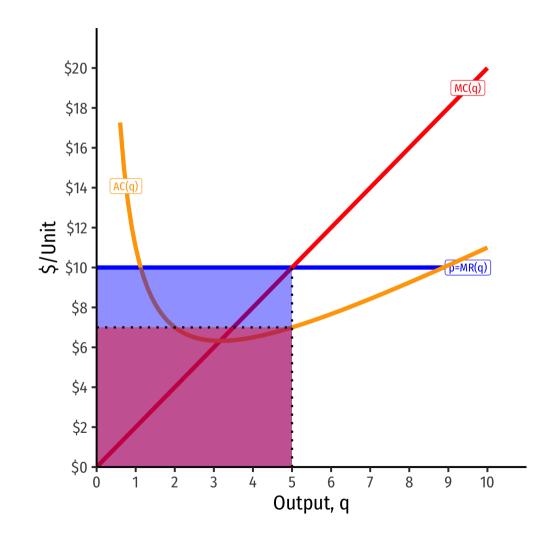


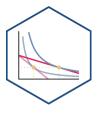
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
- At q* = 5 (totals):
 - \circ R(5) = \$50



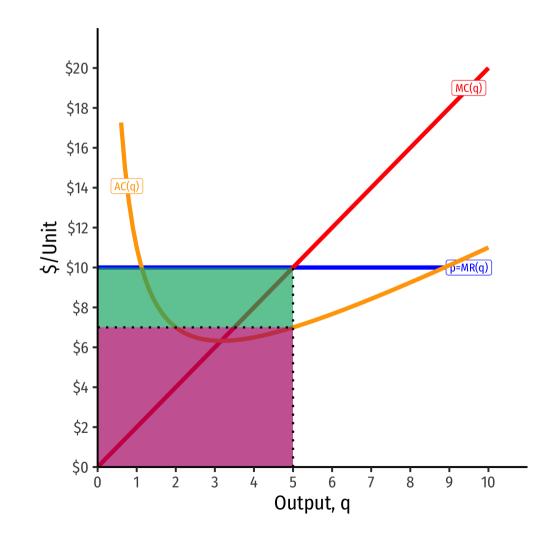


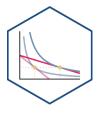
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
 - AC(5) = \$7/unit
- At q* = 5 (totals):
 - \circ R(5) = \$50
 - o C(5) = \$35



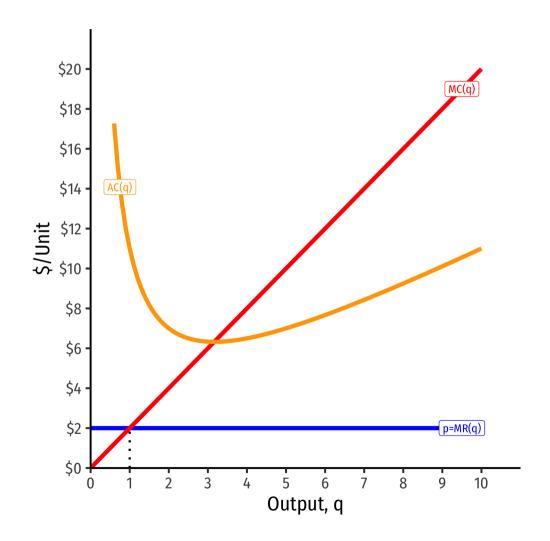


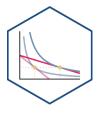
- At market price of p* = \$10
- At q* = 5 (per unit):
 - AR(5) = \$10/unit
 - AC(5) = \$7/unit
 - $A\pi(5) = $3/unit$
- At q* = 5 (totals):
 - \circ R(5) = \$50
 - \circ C(5) = \$35
 - \circ π = \$15



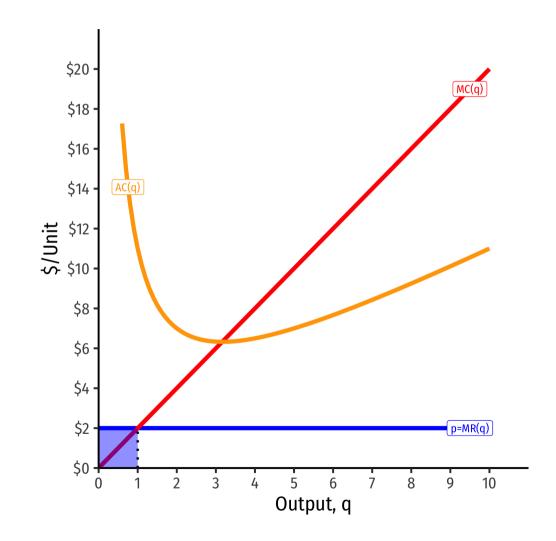


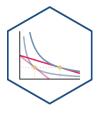
- At market price of p* = \$2
- At q* = 1 (per unit):
- At q* = 1 (totals):



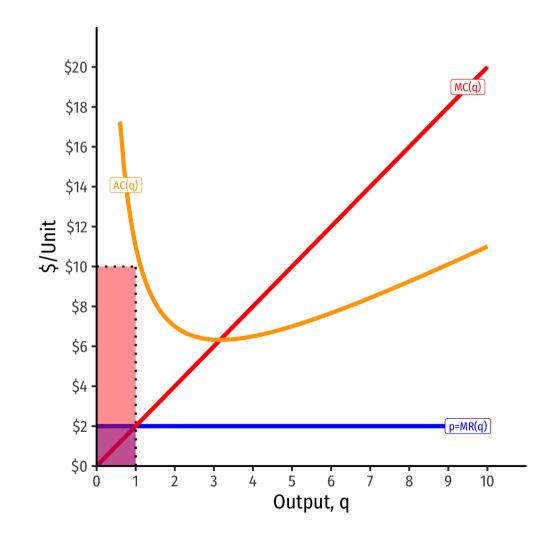


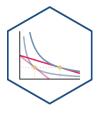
- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
- At q* = 1 (totals):
 - o R(1) = \$2





- At market price of p* = \$2
- At q* = 1 (per unit):
 - AR(1) = \$2/unit
 - AC(1) = \$10/unit
- At q* = 1 (totals):
 - o R(1) = \$2
 - o C(1) = \$10





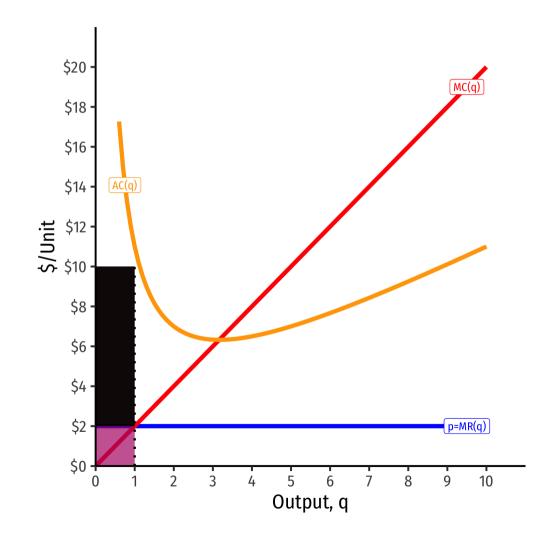
- At market price of p* = \$2
- At q* = 1 (per unit):

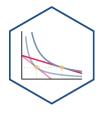
•
$$A\pi(1) = -\$8/unit$$

• At q* = 1 (totals):

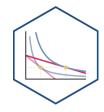
$$\circ$$
 C(1) = \$10

$$\circ \pi(1) = -$8$$



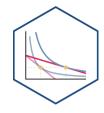


- What if a firm's profits at q^* are **negative** (i.e. it earns **losses**)?
- Should it produce at all?



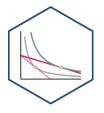
- Suppose firm chooses to produce **nothing** (q = 0):
- If it has **fixed costs** (f > 0), its profits are:

$$\pi(q) = pq - C(q)$$



- Suppose firm chooses to produce **nothing** (q = 0):
- If it has **fixed costs** (f > 0), its profits are:

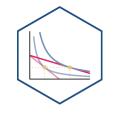
$$\pi(q) = pq - C(q) \ \pi(q) = pq - f - VC(q)$$



- Suppose firm chooses to produce **nothing** (q = 0):
- If it has **fixed costs** (f > 0), its profits are:

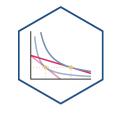
$$egin{aligned} \pi(q) &= pq - C(q) \ \pi(q) &= pq - f - VC(q) \ \pi(0) &= -f \end{aligned}$$

i.e. it (still) pays its fixed costs



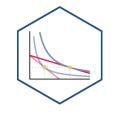
• A firm should choose to produce **no output** (q=0) only when:

 π from producing $<\pi$ from not producing



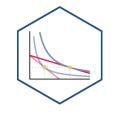
• A firm should choose to produce **no** output (q=0) only when:

 π from producing $<\pi$ from not producing $\pi(q)<-f$



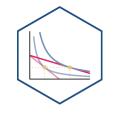
• A firm should choose to produce **no** output (q = 0) only when:

 π from producing $<\pi$ from not producing $\pi(q)<-f$ pq-VC(q)-f<-f



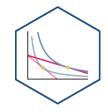
• A firm should choose to produce **no** output (q = 0) only when:

$$\pi$$
 from producing $<\pi$ from not producing $\pi(q)<-f$ $pq-VC(q)-f<-f$ $pq-VC(q)<0$



• A firm should choose to produce **no** output (q = 0) only when:

 π from producing $<\pi$ from not producing $\pi(q)<-f$ pq-VC(q)-f<-f pq-VC(q)<0 pq< VC(q)

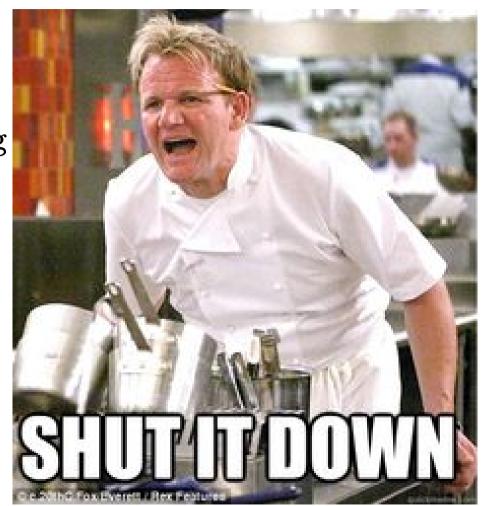


• A firm should choose to produce **no** output (q=0) only when:

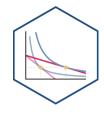
 π from producing $<\pi$ from not producing

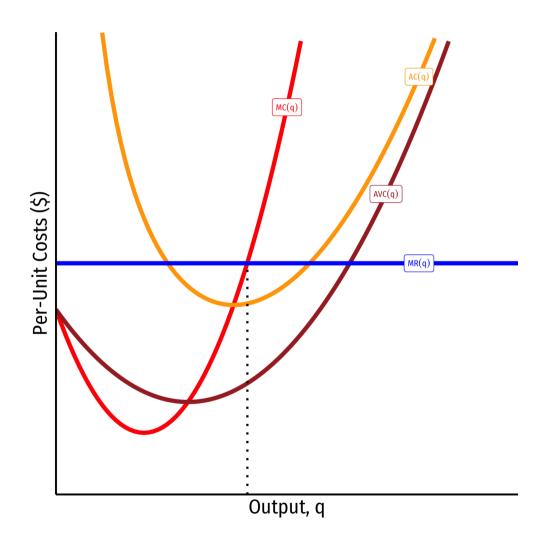
$$egin{aligned} \pi(q) < -f \ pq - VC(q) - f < -f \ pq - VC(q) < 0 \ pq < VC(q) \ & pq < VC(q) \end{aligned}$$

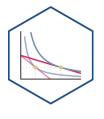
• Shut down price: firm will shut down production in the short run when p < AVC(q)

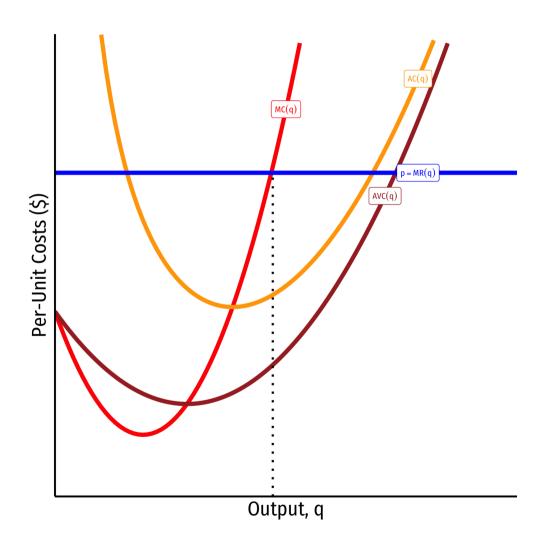


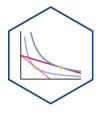


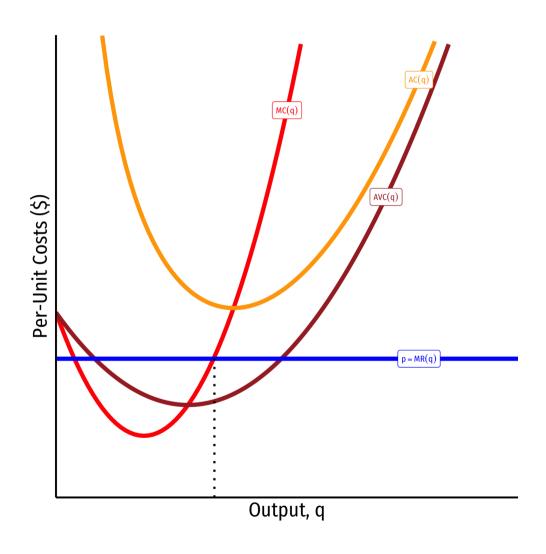


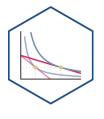


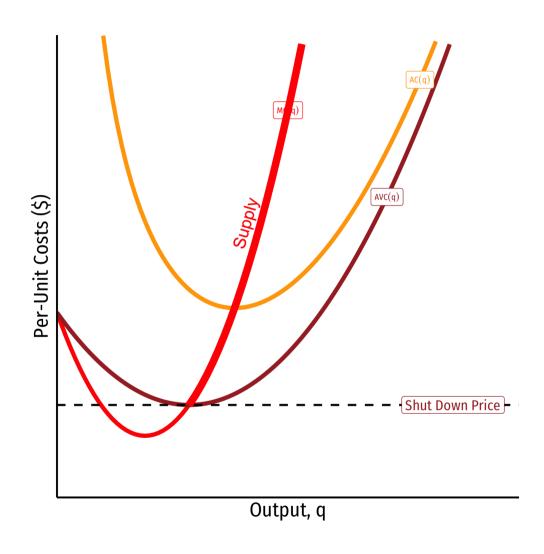


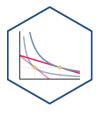


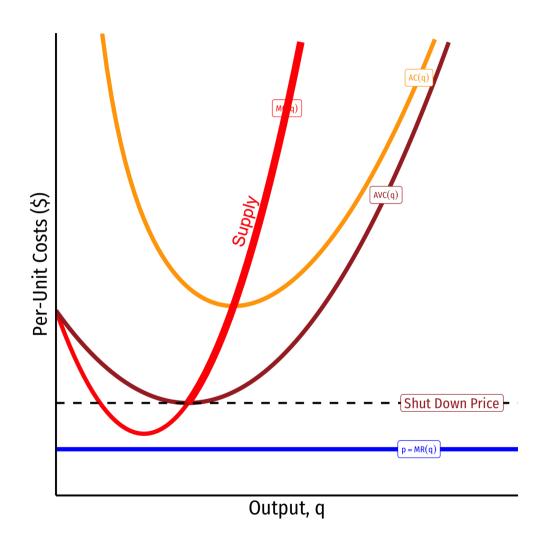


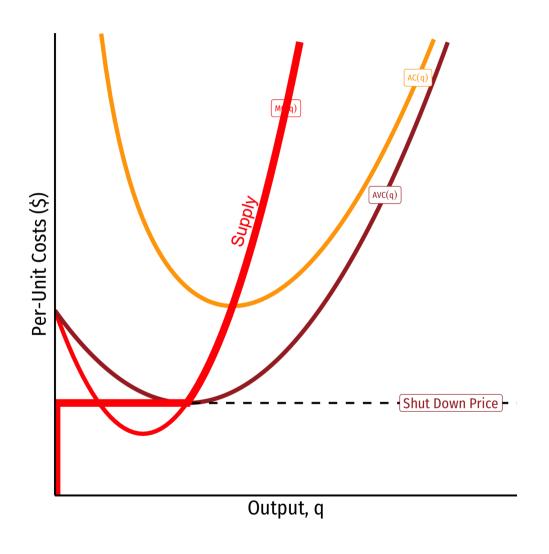






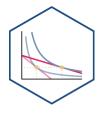


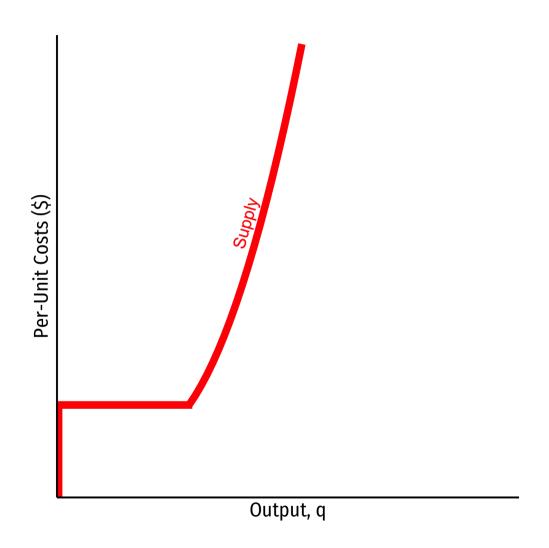




Firm's short run supply curve:

$$\left\{ egin{aligned} p = MC(q) & ext{if } p \geq AVC \ q = 0 & ext{If } p < AVC \end{aligned}
ight.$$

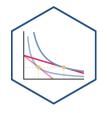




Firm's short run supply curve:

$$\left\{ egin{aligned} p = MC(q) & ext{if } p \geq AVC \ q = 0 & ext{If } p < AVC \end{aligned}
ight.$$

Summary:

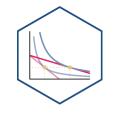


- 1. Choose q^st such that MR(q) = MC(q)
- 2. Profit $\pi = q[p-AC(q)]$
- 3. Shut down if p < AVC(q)

Firm's short run (inverse) supply:

$$\left\{ egin{aligned} p = MC(q) & ext{if } p \geq AVC \ q = 0 & ext{If } p < AVC \end{aligned}
ight.$$

Choosing the Profit-Maximizing Output q^{*} : Example



Example: Bob's barbershop gives haircuts in a very competitive market, where barbers cannot differentiate their haircuts. The current market price of a haircut is \$15. Bob's daily short run costs are given by:

$$C(q) = 0.5q^2 \ MC(q) = q$$

- 1. How many haircuts per day would maximize Bob's profits?
- 2. How much profit will Bob earn per day?
- 3. Find Bob's shut down price.